金属有机框架基抗菌材料的应用研究与展望Application and prospect of metal-organic frameworks based antibacterial materials
詹小平;秦金莹;曹高娟;李红芳;林祖金;
ZHAN Xiaoping;QIN Jinying;CAO Gaojuan;LI Hongfang;LIN Zujin;College of Life Sciences,Fujian Agriculture and Forestry University;State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences;
摘要(Abstract):
细菌感染特别是多重耐药菌感染是当前临床治疗所面临的一大难题,加上细菌耐药问题越来越严峻,能用的有效药和治疗手段愈发局限。金属有机框架(metal-organic frameworks, MOFs)作为一种新型的多孔晶态材料,能释放自身抗菌组分、产生活性氧和负载抗菌剂,是当前最具潜力的抗菌材料,为克服细菌感染和耐药问题带了新的突破口。本文综述了MOFs的抗菌机理、抗菌应用和潜在的细胞毒性。总结了MOFs的金属离子、有机配体和氧化应激等主要抗菌机理,重点介绍不同结构的MOFs材料及其作为抗菌剂或抗菌载体在抗菌领域的应用,最后概述了MOFs可能存在的细胞毒性,提出MOFs抗菌应用仍需克服的一些困难,并展望了这类抗菌材料今后的发展方向。
Bacterial infections, especially multi-drug resistant bacterial infections, are one of the major problems in current clinical treatments. What is more, bacterial resistance is also becoming more and more serious, leading to the limited availability of effective drugs and treatment methods. As a new type of porous crystalline material, metal-organic frameworks(MOFs) represent promising materials to deal with the above problems; they can serve as effective antibacterial agents by releasing their own antibacterial components, producing reactive oxygen species, and loading antibacterial agents. Herein, we review the antibacterial mechanism, antibacterial applications, and potential cytotoxicity of MOFs. First, we summarize the main antibacterial mechanisms of MOFs, including the release of metal ions and organic ligands and induction of oxidative stress. Then, we emphatically introduce MOF materials used as antibacterial agents or solid carriers for loading antibacterial agents for use in the antibacterial field. Finally, we summarize the potential cytotoxicity of MOFs, point out the current challenges that need to be solved, and prospect the future development of MOF-based antibacterial agents.
关键词(KeyWords):
多重耐药菌;金属有机框架;抗菌机理;抗菌应用;细胞毒性
multi-drug resistant bacteria;metal-organic framework;antibacterial mechanism;antibacterial applications;cytotoxicity
基金项目(Foundation): 国家自然科学基金(22171265);; 福建省自然科学基金(2020J01549);; 福建农林大学项目(CXZX2020042A,118360020,XJQ201616)
作者(Authors):
詹小平;秦金莹;曹高娟;李红芳;林祖金;
ZHAN Xiaoping;QIN Jinying;CAO Gaojuan;LI Hongfang;LIN Zujin;College of Life Sciences,Fujian Agriculture and Forestry University;State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences;
DOI: 10.15914/j.cnki.wykx.2022.02.01
参考文献(References):
- 白镓玮,马承泰,吴淼,等,2021.肺移植术后多重耐药菌感染的防治研究进展[J].武汉大学学报(医学版),42(4):551-557.
- 韩建庚,路佳,张洁,2021.恶性肿瘤患者多重耐药菌感染危险因素的研究进展[J].现代药物与临,36(7):1 541-1 544.
- 胡冲,蔡安康,陈梓君,2021.金属有机框架材料在抗菌中的应用研究进展[J].广东化工,48(20):123,114.
- 解寻,孔晋亮,罗劲,等,2021.中药对耐药菌生物膜抑制作用的研究进展[J].实用医学杂志,37(21):2 813-2 816.
- 闵彦,胡成进,2021.微生物群定植抵抗力抗感染研究进展[J].实用医药杂志,38(7):647-650.
- 裴震,郭建栋,张倩,等,2021.金属-有机骨架抗菌复合材料与纤维的研究进展及应用[J].复合材料学报,38(8):2 396-2 403.
- 齐野,任双颂,车颖,等,2020.金属有机框架抗菌材料的研究进展[J].化学学报,78(7):613-624.
- 王丹,朱丹,邹妮,2021.多重耐药菌医院感染的经济负担研究进展[J].老年医学与保健,27(2):417-419.
- 吴云峰,藏雨,徐亮,等,2021.有机多孔材料的光催化抗菌性能研究进展[J].化学世界,62(11):643-652.
- 张菲阳,周英顺,2021.临床常见革兰阴性菌异质性耐药研究进展[J].西南医科大学学报,44(5):520-524.
- Abánades Lázaro I,Haddad S,Sacca S,et al,2017.Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability,cell uptake,and pH-responsive drug delivery[J].Chem,2(4):561-578.
- Abdelhameed R M,Darwesh O M,Rocha J,et al,2019.IRMOF-3 biological activity enhancement by post-synthetic modification[J].European Journal of Inorganic Chemistry(9):1 243-1 249.
- Abdelhamid H N,Mathew A P,2022.Cellulose-metal organic frameworks(CelloMOFs) hybrid materials and their multifaceted applications:a review[J].Coordination Chemistry Reviews,451:214 263.
- Abednejad A,Ghaee A,Nourmohammadi J,et al,2019.Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties[J].Carbohydr Polym,222:115 033.
- Bhardwaj N,Pandey S K,Mehta J,et al,2018.Bioactive nano-metal-organic frameworks as antimicrobials against Gram-positive and Gram-negative bacteria[J].Toxicology Research,7(5):931-941.
- Cao P,Wu X,Zhang W,et al,2020.Killing oral bacteria using metal-organic frameworks[J].Industrial & Engineering Chemistry Research,59(4):1 559-1 567.
- Cervera C,Vandelden C,Gavalda J,et al,2014.Multidrug-resistant bacteria in solid organ transplant recipients[J].Clinical Microbiology and Infection,20:49-73.
- Chen G,Leng X,Luo J,et al,2019.In vitro toxicity study of a porous iron(Ⅲ) metal-organic framework[J].Molecules,24(7):1 211.
- Chen M,Long Z,Dong R,et al,2020.Titanium incorporation into Zr-porphyrinic mtal-organic frameworks with enhanced antibacterial activity against multidrug-resistant pathogens[J].Small,16(7):1 906 240.
- Chernousova S,Epple M,2013.Silver as antibacterial agent:ion,nanoparticle and metal[J].Angewandte Chemie International Edition,52(6):1 636-1 653.
- Dharmaratne P,Sapugahawatte D N,Wang B,et al,2020.Contemporary approaches and future perspectives of antibacterial photodynamic therapy(aPDT) against methicillin-resistant Staphylococcus aureus(MRSA):a systematic review[J].European Journal of Medicinal Chemistry,200:112 341.
- Fayaz A M,Balaji K,Girilal M,et al,2010.Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics:a study against gram-positive and gram-negative bacteria[J].Nanomedicine:Nanotechnology,Biology and Medicine,6(1):103-109.
- Ghaffar I,Imran M,Perveen S,et al,2019.Synthesis of chitosan coated metal organic frameworks(MOFs) for increasing vancomycin bactericidal potentials against resistant S.aureus strain[J].Materials Science & Engineering C-Materials for Biological Applications,105:110 111.
- Grall R,Hidalgo T,Delic J,et al,2015.In vitro biocompatibility of mesoporous metal(Ⅲ;Fe,Al,Cr) trimesate MOF nanocarriers[J].Journal of Materials Chemistry B,3(42):8 279-8 292.
- Hajipour M J,Fromm K M,Akbar Ashkarran A,et al,2012.Antibacterial properties of nanoparticles[J].Trends in Biotechnology,30(10):499-511.
- Han D,Han Y,Li J,et al,2020.Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds[J].Applied Catalysis B-Environmental,261:118 248.
- Hawxwell S M,Espallargas G M,Bradshaw D,et al,2007.Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks[J].Chemical Communications(15):1 532-1 534.
- Horcajada P,Serre C,Vallet-regi M,et al,2006.Metal-organic frameworks as efficient materials for drug delivery[J].Angewandte Chemie International Edition,45(36):5 974-5 978.
- Huang Y,Ren J,Qu X,2019.Nanozymes:classification,catalytic mechanisms,activity regulation and applications[J].Chemical Reviews,119(6):4 357-4 412.
- Jo J H,Kim H C,Huh S,et al,2019.Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands[J].Dalton Transactions,48(23):8 084-8 093.
- Lemire J A,Harrison J J,Turner R J,2013.Antimicrobial activity of metals:mechanisms,molecular targets and applications[J].Nature Reviews Microbiology,11(6):371-384.
- Li P,Li J,Feng X,et al,2019.Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning[J].Nature Communication,10(1):2 177.
- Li R,Chen T,Pan X,2021.Metal-organic-framework-based materials for antimicrobial applications[J].ACS Nano,15(3):3 808-3 848.
- Li T,Qiu H,Liu N,et al,2020.Construction of self-activated cascade metal-organic framework/enzyme hybrid nanoreactors as antibacterial agents[J].Colloids and Surfaces B:Biointerfaces,191:111 001.
- Liu J H,Wu D,Zhu N,et al,2021.Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials[J].Trends in Food Science & Technology,109:413-434.
- Liu Y,Xu X,Xia Q,et al,2010.Multiple topological isomerism of three-connected networks in silver-based metal-organoboron frameworks[J].Chemical Communications,46(15):2 608-2 610.
- Liu Z,Wang F,Ren J,et al,2019.A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria[J].Biomaterials,208:21-31.
- Ma D,Li P,Duan X,et al,2020.A hydrolytically stable vanadium(IV) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control[J].Angewandte Chemie International Edition,59(10):3 905-3 909.
- Mallakpour S,Sirous F,Hussain C M,2021.Metal-organic frameworks/biopolymer nanocomposites:from fundamentals toward recent applications in modern technology[J].New Journal of Chemistry,45(19):8 409-8 426.
- Mendes R F,Figueira F,Leite J P,et al,2020.Metal-organic frameworks:a future toolbox for biomedicine [J].Chemical Society Reviews,49(24):9 121-9 153.
- Miller K P,Wang L,Benicewicz B C,et al,2015.Inorganic nanoparticles engineered to attack bacteria[J].Chemical Society Reviews,44(21):7 787-7 807.
- Moritz M,Geszke-moritz M,2013.The newest achievements in synthesis,immobilization and practical applications of antibacterial nanoparticles[J].Chemical Engineering Journal,228:596-613.
- Nasrabadi M,Ghasemzadeh M A,Zand Monfared M R,2019.The preparation and characterization of UiO-66 metal-organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities[J].New Journal of Chemistry,43(40):16 033-16 040.
- Nong W,Wu J,Ghiladi R A,et al,2021.The structural appeal of metal-organic frameworks in antimicrobial applications[J].Coordination Chemistry Reviews,442:214 007.
- Qi Y,Ren S,Che Y,et al,2020a.Research progress of metal-organic frameworks based antibacterial materials[J].Acta Chimica Sinica,78(7):613-624.
- Qi Y,Ye J,Ren S,et al,2020b.In-situ synthesis of metal nanoparticles@metal-organic frameworks:highly effective catalytic performance and synergistic antimicrobial activity[J].Journal of Hazardous Materials,387:121 687.
- Rasheed T,Rizwan K,Bilal M,et al,2020.Metal-organic framework-based engineered materials-fundamentals and applications[J].Molecules,25(7):1 598.
- Ren P,Liu M L,Zhang J,et al,2008.1D,2D and 3D luminescent zinc(ii) coordination polymers assembled from varying flexible thioether ligands[J].Dalton Transactions,(35):4 711-4 713.
- Ruyra A,Yazdi A,Espin J,et al,2015.Synthesis,culture medium stability,and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles[J].Chemistry,21(6):2 508-2 518.
- Sava Gallis D F,Butler K S,Agola J O,et al,2019.Antibacterial countermeasures via metal-organic framework-supported sustained therapeutic release[J].ACS Applied Materials & Interfaces,11(8):7 782-7 791.
- Simon-yarza T,Baati T,Neffati F,et al,2016.In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration[J].International Journal of Pharmaceutics,511(2):1 042-1 047.
- Tabish T A,Zhang S,Winyard P G,2018.Developing the next generation of graphene-based platforms for cancer therapeutics:the potential role of reactive oxygen species[J].Redox Biology,15:34-40.
- Tamames-tabar C,Imbuluzqueta E,Guillou N,et al,2015.A Zn azelate MOF:combining antibacterial effect[J].CrystEngComm,17(2):456-462.
- Vatansever F,De Melo W C M A,Avci P,et al,2013.Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics,photodynamic therapy,and beyond[J].FEMS Microbiology Reviews,37(6):955-989.
- Wang D,Jana D,Zhao Y,2020.Metal-organic framework derived nanozymes in biomedicine[J].Accounts of Chemical Research,53(7):1 389-1 400.
- Wang D,Wu H,Zhou J,et al,2018.In situ one-pot synthesis of MOF-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy[J].Advanced Science,5(6):1 800 287.
- Wang H,Wan K,Shi X,2019a.Recent advances in nanozyme research[J].Advanced Materials,31(45):1 805 368.
- Wang X,Xu W,Gu J G,et al,2019b.MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively[J].Nanoscale,11(38):17 782-17 790.
- Yan Z,Fu L,Zuo X,et al,2018.Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol[J].Applied Catalysis B:Environmental,226:23-30.
- Yang J,Wang C,Liu X,et al,2020.Gallium-carbenicillin framework coated defect-rich hollow TiO2 as a photocatalyzed oxidative stress amplifier against complex infections[J].Advanced Functional Materials,30(43):2 004 861.
- Yu J,Mu C,Yan B,et al,2017.Nanoparticle/MOF composites:preparations and applications[J].Materials Horizons,4(4):557-569.
- Zhang L,Zhang Y,Wang Z,et al,2019a.Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia[J].Materials Horizons,6(8):1 682-1 687.
- Zhang M,Wang G,Wang D,et al,2021.Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications[J].International Journal of Biological Macromolecules,175:481-494.
- Zhang X,Liu L,Huang L,et al,2019b.The highly efficient elimination of intracellular bacteria via a metal organic framework(MOF)-based three-in-one delivery system[J].Nanoscale,11(19):9 468-9 477.
- Zheng Q,Liu X,Zheng Y,et al,2021.The recent progress on metal-organic frameworks for phototherapy[J].Chemical Society Reviews,50(8):5 086-5 125.
- Zhu W,Liu P,Xiao S,et al,2015.Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization[J].Applied Catalysis B:Environmental,172/173:46-51.
- Zhuang W,Yuan D,Li J R,et al,2012.Highly potent bactericidal activity of porous metal-organic frameworks[J].Advanced Healthcare Materials,1(2):225-238.
- Zirak Hassan Kiadeh S,Ghaee A,Farokhi M,et al,2021.Electrospun pectin/modified copper-based metal-organic framework(MOF) nanofibers as a drug delivery system[J].International Journal of Biological Macromolecules,173:351-365.
- 多重耐药菌
- 金属有机框架
- 抗菌机理
- 抗菌应用
- 细胞毒性
multi-drug resistant bacteria - metal-organic framework
- antibacterial mechanism
- antibacterial applications
- cytotoxicity
- 詹小平
- 秦金莹
- 曹高娟
- 李红芳
- 林祖金
ZHAN Xiaoping- QIN Jinying
- CAO Gaojuan
- LI Hongfang
- LIN Zujin
- College of Life Sciences
- Fujian Agriculture and Forestry University
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- 詹小平
- 秦金莹
- 曹高娟
- 李红芳
- 林祖金
ZHAN Xiaoping- QIN Jinying
- CAO Gaojuan
- LI Hongfang
- LIN Zujin
- College of Life Sciences
- Fujian Agriculture and Forestry University
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences