246 | 1 | 91 |
下载次数 | 被引频次 | 阅读次数 |
本研究旨在探究木荷幼苗在自然干燥条件下的生理响应,为其培育提供科学依据。采用自然干燥法研究不同水分梯度对木荷幼苗叶片生理指标的影响,通过预试验确定木荷幼苗在自然干燥条件下的生长情况,每隔3 d进行1次取样,测定不同干旱处理时间点(CK:第0天、P1:第3天、P2:第7天、P3:第11天、P4:第15天)叶绿素(Chl)、丙二醛(MDA)、可溶性蛋白(SP)含量以及过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)酶活性,并对测定的6个生理指标进行综合评价。结果显示,随着干旱程度的增加,Chl含量逐渐降低,MDA含量和CAT酶活性总体上呈上升趋势,POD和SOD酶活性先升高后降低,而SP含量呈先下降后上升的趋势;通过主成分分析和相关性分析,Chl、MDA、POD、SOD的得分较高,且存在显著的相关性;抗旱性综合响应函数Y值在干旱胁迫程度增加过程中呈先增后减趋势,在第3天达到最小值,第11天达到最大值。干旱初期,木荷幼苗适应能力较强,随胁迫持续,适应力渐弱。
Abstract:The aim of this study was to investigate the physiological responses of Schima superba seedlings to natural drying conditions, to provide a scientific basis for their cultivation. We used a natural drying method to examine the effects of varying water gradi-ents on the physiological indices of S. superba seedling leaves. Preliminary experiments were conducted to assess the growth of S. superba seedlings under natural drying conditions. Samples were collected every three days to measure chlorophyll(Chl), malondialdehyde(MDA), soluble protein(SP), catalase(CAT), peroxidase(POD), and superoxide dis-mutase(SOD) activities at different drought treatment times(CK: 0th day, P1:3rd day, P2:7th day, P3:11th day, P4:15th day). A comprehensive evaluation of six physiological indices was conducted, and the results indicated that, as the severity of drought increased, the Chl content gradually decreased, whereas the MDA content and CAT enzyme activity generally showed an up-ward trend. POD and SOD enzyme activities initially increased and then decreased, and SP content exhibited an initial decreas-ing trend, followed by an increase. The principal component and correlation analyses revealed that Chl, MDA, POD, and SOD had higher scores and significant intercorrelations. The comprehensive drought resistance response function Y value showed an initial increase, followed by a decrease with increasing drought stress, reaching a minimum on the third day and a maximum on the eleventh day. Notably, S. superba seedlings exhibit a strong adaptive capacity in the early stages under drought condi-tions, but their adaptability diminishes as drought stress persists.
赖小连,颜玉娟,颜立红,等,2020.干旱胁迫对黄檀幼苗生长及生理特性的影响[J].东北林业大学学报,48(7):1-6.
李合生,2000.植物生理生化实验原理和技术[M].北京:高等教育出版社.
刘燕,张凌楠,刘晓宏,等,2023.干旱胁迫植物个体生理响应及其生态模型预测研究进展[J].生态学报,43(24):10042-10053.
马涛,罗晨梦,李思佳,等,2023.木本植物响应干旱胁迫的研究现状[J].四川大学学报(自然科学版),60(5):25-34.
庞进平,王永生,2023.油菜幼苗光合及叶绿素荧光参数对干旱胁迫的响应及其抗旱性分析[J].西北植物学报,43(2):276-284.
屈坤杰,李鹏,邓燕莉,等,2022.豹皮樟扦插苗对干旱胁迫的生理响应机制[J].西南农业学报,35(2):343-351.
王德福,赵楠,邱万滨,等,2024.两个种源木荷幼苗对干旱-复水的生理生态响应[J].广西植物,44(5):873-884.
文竹梅,冯玉超,刘青青,等,2022.3种草本植物种子萌发及幼苗生长生理对干旱胁迫的响应[J].福建农林大学学报(自然科学版),51(4):562-569.
吴永波,叶波,2016.高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J].生态学报,36(2):403-410.
游韧,邓湘雯,胡彦婷,等,2023.树木对干旱胁迫及复水的生理生态响应研究进展[J].林业科学,59(11):124-136.
张海娜,鲁向晖,金志农,等,2019.高温条件下稀土尾砂干旱对4种植物生理特性的影响[J].生态学报,39(7):2426-2434.
赵曼利,杜启兰,焦健,等,2016.盐胁迫对不同品种油橄榄抗盐性生理指标的影响[J].福建农林大学学报(自然科学版),45(1):19-25.
周志春,2020.中国木荷[M].北京:科学出版社.
朱刚,2023.木荷干旱胁迫的生理影响及SsPER17基因抗旱功能分析[D].广州:仲恺农业工程学院.
Amini A,Majidi M M,Mokhtari N,et al,2023.Drought stress memory in a germplasm of synthetic and common wheat:antioxidant system,physiological and morphological consequences[J].Scientific Reports,13(1):8569.
Challabathula D,Zhang Q,Bartels D,2018.Protection of photosynthesis in desiccation-tolerant resurrection plants[J].Journal of Plant Physiology,227:84-92.
Chang Y,Zhang J,Bao G,et al,2021.Physiological responses of highland barley seedlings to NaCl,drought,and freeze-thaw stress[J].Journal of Plant Growth Regulation,40(1):154-161.
Chen J,Zhao X,Zhang Y,et al,2019.Effects of drought and rehydration on the physiological responses of Artemisia halodendron[J].Water,11(4):793.
Ge Y,He X,Wang J,et al,2014.Physiological and biochemical responses of Phoebe bournei seedlings to water stress and recovery[J].Acta Physiologiae Plantarum,36(5):1241-1250.
He Z,Zhong J,Sun X,et al,2018.The maize ABA receptors ZmPYL8,9,and 12 facilitate plant drought resistance[J].Frontiers in Plant Science,9:422.
Jin X,Liu Z,Wu W,2023.POD,CAT and SOD enzyme activity of corn kernels as affected by low plasma pretreatment[J].International Journal of Food Properties,26(1):38-48.
Nelson H P,Devenish-Nelson E S,Rusk B L,et al,2018.A call to action for climate change research on Caribbean dry forests[J].Regional Environmental Change,18(5):1337-1342.
Wei W,Liang D,Bian X,et al,2019.GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean[J].The Plant Journal,100(2):384-398.
Zadworny M,Mucha J,Jagodziński A M,et al,2021.Seedling regeneration techniques affect root systems and the response of Quercus robur seedlings to water shortages[J].Forest Ecology and Management,479:118552.
基本信息:
DOI:10.15914/j.cnki.wykx.2024.02.03
中图分类号:S792.99
引用信息:
[1]许祖元,陈立,陈樱等.木荷幼苗对干旱胁迫的生理响应[J].武夷科学,2024,40(02):100-106.DOI:10.15914/j.cnki.wykx.2024.02.03.
基金信息:
福建省林业科技项目(2023FKJ20,ZMGG-0703);; 福建省种业创新与产业化工程项目(ZYCX-LY-2021005)